Skip to main content
Log in

Synthesis and characterization of MoO3 nanostructures by solution combustion method employing morphology and size control

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Molybdenum oxide nanostructures were synthesized utilizing the solution combustion method where the ammonium molybdate powder and an organic additive were used as precursors. Different organic additives including ethylene diamine tetra-acetic acid (EDTA), polyethylene glycol 200 (PEG 200), sorbitol and urea were used as surfactants in order to investigate the effect of additive structure on morphology and particle size of products. Also various reaction parameters such as the additive/Mo molar ratio, concentration of metal ion in solution, pH of the reaction, and temperature of the synthesis media were changed to study effects on product morphology and size. Outcomes were characterized by Scanning Electron Microscopy (SEM), X-ray diffraction, and Transmission Electron Microscopy (TEM) techniques. Results show a variety of MoO3 nanoparticles and nanorods produced within the size range of 10–80 nm. Furthermore, microrods and microsheets were also obtained through this method whose length varied in the order of microns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arulraj A, Goutenoire F, Tabellout M, Bohnke O, Lacorre P (2002) Synthesis and characterization of the anionic conductor system La2Mo2O9-0.5xFx (x = 0.02−0.30). Chem Mater 14:2492

    Article  CAS  Google Scholar 

  • Caillat T, Fleurial JP, Snyder GJ (1999) Chevrel phases. Solid State Sci 1:535–544

    Article  CAS  ADS  Google Scholar 

  • Camacho-Bragado GA, Jose-Yacaman M (2006) Self-assembly of molybdite nanoribbons. Appl Phys A 82:19−22

    Article  CAS  ADS  Google Scholar 

  • Chevrel R, Hirrien M, Sergent M (1986) Superconducting Chevrel phases: prospects and perspectives. Polyhedron 5:87–94

    Article  CAS  Google Scholar 

  • Delk I, Sienko FS, Sienko MJ (1979) Correlations between structure and the superconducting transition temperature in Chevrel phase molybdenum chalcogenides. Solid State Commun 31:699–701

    Article  CAS  ADS  Google Scholar 

  • Dhas NA, Gedanken A (1997a) characterization of sonochemically prepared unsupported and silica-supported nanostructured pentavalent molybdenum oxide. J Phys Chem B 101:9495–9503

    Article  CAS  Google Scholar 

  • Dhas NA, Gedanken A (1997b) Sonochemical synthesis of molybdenum oxide− and molybdenum carbide−silica nanocomposites. Chem Mater 9:3144–3154

    Article  CAS  Google Scholar 

  • Dhas NA, Suslick KS (2005) Sonochemical preparation of hollow nanospheres and hollow nanocrystals. J Am Chem Soc 127:2368–2369

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Droguett DE, Fuenzalida VM, Diaz-Espinoza MS, Solorzano G (2008) Electron beam effects on amorphous molybdenum oxide nanostructures grown by condensation in hydrogen . J Mater Sci 43:591–596

    Article  CAS  ADS  Google Scholar 

  • Du K, Fu W, Wei R, Yang H, Xu J, Chang L, Yu Q, Zou G (2008) Ultrasonic-assisted synthesis of highly dispersed MoO3 nanospheres using 3-mercaptopropyltrimethoxysilane. Ultrasonic sonochemistry 233–238

  • Feldman Y, Wasserman E, Srolouvitz DJ, Tenne R (1995) High-rate, gas-phase growth of moS2 nested inorganic fullerenes and nanotubes. Science 267:222–225

    Article  CAS  PubMed  ADS  Google Scholar 

  • Giordano N, Meazza M, Castellan A, Bart JCJ, Ragaini V (1977) Structure and catalytic activity of MoO3⋅SiO2 systems: III. Mechanism of oxidation of propylene. J Catal 50:342–352

    Article  CAS  Google Scholar 

  • Hagrman PJ, Hagrman D, Zubieta J, Angew (1999) Organic-inorganic hybrid materials: from simple coordination polymers to organodiamine-templated molybdenum oxides. Chem Int Ed Engl 38:2638–2684

    Article  Google Scholar 

  • Hershfinkel M, Gheber LA, Volterra B, Hutchison JL, Margulis L, Tenne R (1994) Nested polyhedra of MX2 (M = W, Mo; X = S, Se) probed by high-resolution electron microscopy and scanning tunneling microscopy. J Am Chem Soc 116:1914–1917

    Article  CAS  Google Scholar 

  • Kim HM, Fukumoyo T, Hayashi S, Yamamoto K (1994) Raman study of crystal structure of gas-evaporated MoO3 microcrystals. J Phys Soc Jpn 63(6):2194–2201

    Article  CAS  ADS  Google Scholar 

  • Knudsen KG, Cooper BH, Topse H (1999) Catalyst and process technologies for ultra low sulfur diesel. Appl Catal A 189:205–215

    Article  CAS  Google Scholar 

  • Lavayen V, Mirabal N, Seekamp J, Torres CMS, Benavente E, González G (2004) Micro and nanostructures of molybdenum trioxide (VI). Phys Stat Sol 1(S1):S58–S61

    Article  Google Scholar 

  • Li XL, Li YD (2003) Formation of MoS2 inorganic fullerenes (IFs) by the reaction of MoO3 nanobelts and S. Chem Eur J 9:2726–2731

    Article  CAS  Google Scholar 

  • Li XL, Liu J-F, Li YD (2002a) Low-temperature synthesis of large-scale single-crystal molybdenum trioxide (MoO3) nanobelts. Appl Phys Lett 81:4832–4839

    Article  CAS  ADS  Google Scholar 

  • Li YB, Bando Y, Goldberg D, Kurashima K (2002b) . Field emission from MoO3 nanobelts. Appl Phys Lett 81:5048–5053

    Article  CAS  ADS  Google Scholar 

  • Li WJ, Shi EW, Ko JM, Chen ZZ, Ogino H, Fukuda T (2003a) Hydrothermal synthesis of MoS2 nanowires. J Cryst Growth 250:418–422

    Article  CAS  ADS  Google Scholar 

  • Li YB, Bando Y, Goldberg D (2003b) MoS2 nanoflowers and their field-emission properties Appl Phys Lett 82:1962–1968

    Article  CAS  ADS  Google Scholar 

  • Liu T-C, Forissier M, Coudurier G, Ve′drine JC (1989) Properties of molybdate species supported on silica. J Chem Soc Faraday Trans 85:1607–1618

    Article  CAS  Google Scholar 

  • Lou XW, Zeng HC (2002) Hydrothermal synthesis of α-MoO3 nanorods via acidification of ammonium heptamolybdate tetrahydrate. Chem Mater 14:4781–4789

    Article  CAS  Google Scholar 

  • Louis C, Tatibouet J-M, Che M (1988) Catalytic properties of silica-supported molybdenum catalysts in methanol oxidation: the influence of molybdenum dispersion. J Catal 109:354–366

    Article  CAS  Google Scholar 

  • Margulis L, Salitra G, Tenne R, Talianker M (1993) Nested fullerene-like structures. Nature (Lond) 365:113–114

    Article  CAS  ADS  Google Scholar 

  • Mitra S, Sridharan K, Unnam J, Ghosh K (2008) Synthesis of nanometal oxides and nanometals using hot- wire and thermal CVD. Thin Solid Films 516:798–802

    Article  CAS  ADS  Google Scholar 

  • Moreno B, Vidoni O, Ovalles C, Chaudret B, Urbina C, Krentzein H (1998) Synthesis and characterization of molybdenum based colloidal particles. J Colloid Interface Sci 207:251–257

    Article  CAS  PubMed  Google Scholar 

  • Niederberger M, Krumeich F, Muhr HJ, Müller M, Nesper R (2001) Synthesis and characterization of novel nanoscopic molybdenum oxide fibers. J Mater Chem 11:1941–1945

    Article  CAS  Google Scholar 

  • Okamoto Y, Ochiai K, Kawano M, Kubota T (2004) Evaluation of the maximum potential activity of Co–Mo/Al2O3 catalysts for hydrodesulfurization. J Catal 222:143–151

    Article  CAS  Google Scholar 

  • Ono T, Anpo M, Kubokawa Y (1986) Catalytic activity and structure of molybdenum trioxide highly dispersed on silica. J Phys Chem 90:4780–4784

    Article  CAS  Google Scholar 

  • Parviz D (2008) Preparation of MoS2 nanostructures and using it as nanocatalyst in HDS process. M.Sc. Thesis, Sharif University of Technology, Chemical and Petroleum Engineering department, Iran.

  • Patzke GR, Michailovski A, Krumeich F, Nesper R, Grunwaldt J-D, Baiker A (2004) One-step synthesis of submicrometer fibers of MoO3. Chem Mater 16:1126–1134

    Article  CAS  Google Scholar 

  • Pereira L, Araujo A, Souza M, Pedrosa A, Santos M, Santos I, Soledade L, Souza A (2006) MoO3-based HDS catalyst obtained by the polymeric precursor method. Mater Lett 60:2638–2641

    Article  CAS  Google Scholar 

  • Rao CNR, Nath M (2003) Inorganic nanotubes. Dalton Trans 1:1–24

    Article  Google Scholar 

  • Rapoport L, Bilik Y, Feldman Y, Homyonfer M, Cohen SR, Tenne R (1997) Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387:791–793

    Article  CAS  ADS  Google Scholar 

  • Ressler T, Wienold J, Jentoft R, Girgsdies F (2003) Evolution of defects in the bulk structure of MoO3 during the catalytic oxidation of propene. Eur J Inorg Chem 2:301–312

    Article  Google Scholar 

  • Robinson WM, Van Veen JR, De Beer VJ, Van Santen RA (1999) Development of deep hydrodesulfurization catalysts: I. CoMo and NiMo catalysts tested with (substituted) dibenzothiophene. Fuel Process Tech 61:89–101

    Article  CAS  Google Scholar 

  • Satishkumar BC, Govindaraj A, Nath M, Rao C (2000) Synthesis of metal oxide nanorods using carbon nanotubes as templates. J Mater Chem 10:2115–2119

    Article  CAS  Google Scholar 

  • Tenne R (2002) Fullerene-like materials and nanotubes from inorganic compounds with a layered (2-D) structure. Colloids Surf 208:83–92

    Article  CAS  Google Scholar 

  • Tenne R, Margulis L, Genut M, Hodes G (1992) Polyhedral and cylindrical structures of tungsten disulphide. Nature 360:444–446

    Article  CAS  ADS  Google Scholar 

  • Tian Y, He Y, Zhu Y (2004) Low temperature synthesis and characterization of molybdenum disulfide nanotubes and nanorods. Mater Chem Phys 87:87–90

    Article  CAS  Google Scholar 

  • Wakihara M, Uchida T, Suzuki K, Taniguchi M (1989) A rechargeable lithium battery employing iron Chevrel phase compound (Fe1.25Mo6S7.8 as the cathode. Electrochim Acta 34:867–869

    Article  CAS  Google Scholar 

  • Zach MP, Ng KH, Penner RM (2000) Molybdenum nanowires by electrodeposition. Science 290:2120–2123

    Article  CAS  PubMed  ADS  Google Scholar 

  • Zach MP, Inazu K, Ng KH, Hemminger JC, Penner RM (2002) Synthesis of molybdenum nanowires with millimeter-scale lengths using electrochemical step edge decoration. Chem Mater 14:3206–3216

    Article  CAS  Google Scholar 

  • Zhou J, Xu NS, Deng SZ, Jun C, Shee J-C, Wang ZL (2003) Large-area nanowire arrays of molybdenum and molybdenum oxides: synthesis and field emission. Adv Mater 15:1835–1840

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kazemeini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parviz, D., Kazemeini, M., Rashidi, A.M. et al. Synthesis and characterization of MoO3 nanostructures by solution combustion method employing morphology and size control. J Nanopart Res 12, 1509–1521 (2010). https://doi.org/10.1007/s11051-009-9727-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9727-6

Keywords

Navigation